

NIST Annual Fire Conference 2006

Fire Fighter Tracking and Locating Systems

Nelson Bryner and Dave Stroup

Fire Fighting Technology Group
Building and Fire Research Laboratory

Advanced Network Technologies Division Information Technology Laboratory

> April 3 – 4, 2006 Gaithersburg, MD 20899

Overview

- Introduction
 - Locate who, where, and under what conditions
- Locating/Tracking Technology
 - Wireless Sensors
 - Building
 - Fire fighter
 - Pedometry
 - Networks
 - Fixed
 - Ad-Hoc
- Summary

Why Invest in Locating/Tracking Technology?

- Firefighter Fatalities
 - 117 in 2004 (USFA)
- Total Injuries
 - 80,800 in 2004 (NFPA)
 - Fireground 37,976 injuries

- Magnitude of U.S. Annual Losses ~ \$128 billion total cost
- Tracking fire fighters allow
 - Better tactical decisions
 - Faster suppression
 - Decreased property losses

Location Data – Who?

- Who is being located or tracked?
 - First responders
 - Fire fighters
 - Law enforcement
 - Building occupants

- Who uses the locating/tracking data
 - First responders
 - Incident commander
 - Rapid intervention team
 - Rehab team

Locating versus Tracking

- Locating
 - Determining the current location
 - Rescue/Extraction
 - Send additional equipment/support
- Tracking
 - Determining current location, movement, & history
 - Rescue/Extraction
 - Send additional equipment/support
 - Tactical decision
 - Fire suppression
 - Apprehension

Where or what building type?

- Type I or Fire-Resistive (NFPA)
 - High rise office, shopping centers, or residential units
 - Reinforced concrete, structural steel (protected)
- Type II or Noncombustible
 - Office buildings, warehouses, auto repair shops
 - Metal frame with metal walls, metal frame with masonry walls, masonry walls with metal roof
- Type III or Ordinary
 - Office buildings, retail stores, mixed occupancy, apartment buildings
 - Noncombustible bearing walls and combustible roofs
 - Most buildings are of this type
- Type IV or Heavy Timber
 - Exterior noncombustible or limited combustible, masonry
 - Interior structural members, walls, columns, floors and roofs are large timbers
 - Common in the New England area
- Type V or Wood Frame
 - Single family dwelling, restaurants, retail stores
 - Log, post & beam, ballon, platform, and plank & beam
 - Structural members are wood and exterior walls are combustible

Under what conditions?

Locating/Tracking Technology

Roles of NIST

- Fundamental Science
 - Measurement or metrology
 - Signal penetration
 - Sensor design
 - Combustion Science
- Building performance
- Fire Environment
- Performance Standards and Testing Protocols
 - Signal quality
 - Sensor interfaces/performance
 - Thermal exposure testing
 - Network design
- Develop new technology where expertise exists

Locating/Tracking Technology

Wide range of technologies

- Tags and peg boards
- Chalkboards
- Acoustic/sound
- Radio frequency
- Infrared signal

Source of Technologies

- Military
- Security and surveillance industry
- Health Care
- Robotics
- Fire Service Equipment
 - Limited due to the market size/funding

Wireless Building Sensors

Building Sensors

- In place to track building performance
 - Attached to specific equipment
 - Designed for months/years of service
- Locate and track
 - Sample frequency
 - Buildings samples / hours
 - Fire fighters samples / second

Issues –

- Need complete building coverage
 - Not just equipment spaces
- Require pre-wiring of building
- Adaptive sampling?

Wireless Fire Fighter Sensors

- Component mounted on or used by fire fighter
- •Transmitter/receiver system
 - Acoustic/sound signal
 - •Radio signal
 - Infrared signal
- Locates fire fighter
- Tracks fire fighter

Acoustic Systems

- Transmitter/receiver system
 - Acoustic or sound waves
- Locates fire fighter
- Commercially available
 - Summit Safety

•Issues-

- No tracking
- •Reflections -
 - Must compare strength of signal
 - Materials reflect differently
 - Multiple reflections

Radio Frequency Based Systems

- •VHF 30 MHz to 300 MHz
- •UHF- 300 MHz to 3 GHz
- •UWB pulse "riding" on RF carrier 2.4 GHz 5.4 GHz
- Triangulation
 - •Multiple transmitters/receivers
- Time of flight
 - Single transmitter/receiver
- •RFID Tags
 - •Reader / tag

Triangulation

- •Front and rear of structure
- •Intersection of signals identifies position
- Can provide elevation

•Issues-

- Signal penetration/attenuation
- Reflections
- Requires at least 3 units

Time of flight (TOF)

- Single transmitter/receiver
- •Track time for signal to travel between units
- Can provide elevation
- Material properties known
 - Model attenuation

(Lytle & Stone NIST)

•Issues

- Signal penetration/attenuation
- Reflections

•RF Identification Tags

- Reader and Tag uniquely identified
- RFID readers in building
 - Each fire fighter is tagged
 - •Walmart tracking merchandise in warehouse
 - •Nursing homes patients
- RFID tabs in building
 - •Each fire fighter has reader
 - •Readers more expensive

RFID Tags cont'd

- •Issues-
 - •Pre-wiring of readers/tags
 - Signal
 - •Coverage
 - Penetration/attenuation
 - •reflections

Pedometry

- Distance
 - •Count steps assume distance/step
- Direction
 - Compass
 - •Gyros
- •Issues-
 - Errors are integrated
 - Distance
 - Different stride
 - Climbing stairs/ladders
 - Direction
 - Sudden movement/fall

Fire • Fighter

Pedometry Corrected

- •GPS update location
 •Fire Fighters
 - Carnegie Mellon University
- •RFID Tags
 - •Reference Tags encoded with location data
 - Peformance
 - Separation of reader & tag
 - Number/coverage of tags
 - •High temperature exposure
 - Advanced Network Technology Division (NIST)
 - •Fire Research Division (NIST)

Sensor Networks

- Fixed
 - Pre configured
 - Data paths established
- Ad Hoc
 - Self healing or reforming
- •RF systems
 - •802.15.4 ZigBee
 - Bluetooth

Star or Point-to-Point

Mesh Network

Fixed networks

- •Multi-hop
- Voice/data communication
 - Williams-Pyro (SBIR)
- •Not locating/tracking
 - Strength of signal
 - •TOF

- Limited ability to dynamically add new nodes/sensors
- Short range
- Node drop-out

Ad Hoc Networks

- Self-forming/re-forming
- Data communication
 - Locating and trackingGPS
 - Physiology sensors and dosimeters
 - Siemens (USAF)

Dynamically add sensors/nodes

- Data paths established on the fly
- •Repetitive pinging to locate nearby nodes

•Issues-

- Short range
- Path determination
 - •Ping, ping, ping, ping, ping
- Data, but not voice

Locating/Tracking Summary

Locator/Tracker

- Interior of Structure
 - Commercial systems for indoor use
 - Pre-wired for limited coverage
- Outside of Structure
 - GPS based systems

Locator

- Interior of Structure
 - Downed fire fighter

Currently no commercially available system

- Locate and track
- Inside and outside
- Fire responders
- Occupants

Locating/Tracking Future Work

- Assist in development of new technology
 - Technical expertise
 - Internal research funds
 - Grants
- Evaluate current systems
 - Laboratory-scale tests
 - Full-scale fire exposure tests
 - Collaborate with Fire Service
- Standards & testing protocols
 - Representative building types
 - Representative exposure conditions

NIST Annual Fire Conference 2006

Objective-

- •To provide a forum for the presentation and discussion of fire research projects that impact first responders,
 - •fire fighting technology,
 - •fire and building codes/standards,
 - •fire-resistant materials, and
 - •fundamental combustion science.

NIST Annual Fire Conference 2006

9:00- 12:30 Fire Fighting Technology/Egress

9:00 9:05	Introduction Personal Protective Technology for First Responders - R. Shaffer (NIOSH NPPTL)
9:30	Research Agenda for Fire Fighter Life Safety - J. G. Routley (NFFF)
9:55	Break / Poster Viewing
10:25	Computer Modeling of Respiratory Protection - K. Butler (BFRL)
10:50	Fire Fighter Tracking and Locating Systems - N. Bryner (BFRL)
11:15	Protective Clothing from Nanotube Based Fabrics - J. Gilman (BFRL)
11:35	Virtual Fire Fighter Trainer - G. Forney (BFRL)
12:00	Egress Data and Modeling - J. Averill (BFRL)

Thermal Class	Maximum Time (min)	Maximum Temperature (°C)/(°F)	Maximum Flux (kW/m²)
I	25	100/212	1
II	15	160/320	2
III	5	260/500	10
IV	<1	>260/500	>10

